diabayes.SVI.compute_phi#
- diabayes.SVI.compute_phi(x: Float[Array, 'N M'], gradp: Float[Array, 'N M'], gradq: Float[Array, 'N M']) Float[Array, 'N M'] [source]#
Compute the Stein variational gradients for a set of particles (
x
) and the gradients of the log-likelihood function (gradp
) and the log-prior (gradq
).- Parameters:
x (ParticleArray) – The set of invertible parameters (“particles”) of shape
(Nparticles, Ndimensions)
gradp (GradientArray) – The gradients of the log-likelihood (
gradp
) and the log-prior (gradq
) with respect to the invertible parameters. Has a shape(Nparticles, Ndimensions)
gradq (GradientArray) – The gradients of the log-likelihood (
gradp
) and the log-prior (gradq
) with respect to the invertible parameters. Has a shape(Nparticles, Ndimensions)
- Returns:
grad_x – The directional gradients for the particle updates, e.g.
new_x = x + step_size * grad_x
. Has the same shape asx
andgradp, gradq
.- Return type:
Gradients